SQL Injection
SQL injection is a technique where an attacker exploits flaws in
application code responsible for building dynamic SQL queries.
The attacker can gain access to privileged sections of the application,
retrieve all information from the database, tamper with existing data,
or even execute dangerous system-level commands on the database
host. The vulnerability occurs when developers concatenate or
interpolate arbitrary input in their SQL statements.
Example #1
Splitting the result set into pages ... and making superusers
(PostgreSQL)
In the following example, user input is directly interpolated into the
SQL query allowing the attacker to gain a superuser account in the database.
<?php
$offset = $_GET['offset']; // beware, no input validation!
$query = "SELECT id, name FROM products ORDER BY name LIMIT 20 OFFSET $offset;";
$result = pg_query($conn, $query);
?>
Normal users click on the 'next', 'prev' links where the
$offset
is encoded into the
URL. The script expects that the incoming
$offset is a number. However, what if someone tries to
break in by appending the following to the
URL
If it happened, the script would present a superuser access to the attacker.
Note that
0;
is to supply a valid offset to the
original query and to terminate it.
Note:
It is a common technique to force the SQL parser to ignore the rest of the
query written by the developer with --
which is the
comment sign in SQL.
A feasible way to gain passwords is to circumvent your search result pages.
The only thing the attacker needs to do is to see if there are any submitted variables
used in SQL statements which are not handled properly. These filters can be set
commonly in a preceding form to customize WHERE, ORDER BY,
LIMIT
and OFFSET
clauses in SELECT
statements. If your database supports the UNION
construct,
the attacker may try to append an entire query to the original one to list
passwords from an arbitrary table. It is strongly recommended to store only
secure hashes of passwords instead of the passwords themselves.
Example #2
Listing out articles ... and some passwords (any database server)
<?php
$query = "SELECT id, name, inserted, size FROM products
WHERE size = '$size'";
$result = odbc_exec($conn, $query);
?>
The static part of the query can be combined with another
SELECT
statement which reveals all passwords:
UPDATE
and INSERT
statements are also
susceptible to such attacks.
Example #3
From resetting a password ... to gaining more privileges (any database server)
<?php
$query = "UPDATE usertable SET pwd='$pwd' WHERE uid='$uid';";
?>
If a malicious user submits the value
' or uid like'%admin%
to
$uid to
change the admin's password, or simply sets
$pwd to
hehehe', trusted=100, admin='yes
to gain more
privileges, then the query will be twisted:
While it remains obvious that an attacker must possess at least some
knowledge of the database architecture to conduct a successful
attack, obtaining this information is often very simple. For example,
the code may be part of an open-source software and be publicly available.
This information may also be divulged
by closed-source code - even if it's encoded, obfuscated, or compiled -
and even by your own code through the display of error messages.
Other methods include the use of typical table and column names. For
example, a login form that uses a 'users' table with column names
'id', 'username', and 'password'.
Example #4 Attacking the database host operating system (MSSQL Server)
A frightening example of how operating system-level commands can be
accessed on some database hosts.
<?php
$query = "SELECT * FROM products WHERE id LIKE '%$prod%'";
$result = mssql_query($query);
?>
If attacker submits the value
a%' exec master..xp_cmdshell 'net user test testpass /ADD' --
to
$prod, then the
$query will be:
MSSQL Server executes the SQL statements in the batch including a command
to add a new user to the local accounts database. If this application
were running as
sa
and the MSSQLSERVER service was
running with sufficient privileges, the attacker would now have an
account with which to access this machine.
Note:
Some examples above are tied to a specific database server, but it
does not mean that a similar attack is impossible against other products.
Your database server may be similarly vulnerable in another manner.
Avoidance Techniques
The recommended way to avoid SQL injection is by binding all data via
prepared statements. Using parameterized queries isn't enough to entirely
avoid SQL injection, but it is the easiest and safest way to provide input
to SQL statements. All dynamic data literals in WHERE
,
SET
, and VALUES
clauses must be
replaced with placeholders. The actual data will be bound during the
execution and sent separately from the SQL command.
Parameter binding can only be used for data. Other dynamic parts of the
SQL query must be filtered against a known list of allowed values.
Example #5 Avoiding SQL injection by using PDO prepared statements
<?php
// The dynamic SQL part is validated against expected values
$sortingOrder = $_GET['sortingOrder'] === 'DESC' ? 'DESC' : 'ASC';
$productId = $_GET['productId'];
// The SQL is prepared with a placeholder
$stmt = $pdo->prepare("SELECT * FROM products WHERE id LIKE ? ORDER BY price {$sortingOrder}");
// The value is provided with LIKE wildcards
$stmt->execute(["%{$productId}%"]);
?>
Prepared statements are provided
by PDO,
by MySQLi,
and by other database libraries.
SQL injection attacks are mainly based on exploiting the code not being written
with security in mind. Never trust any input, especially
from the client side, even though it comes from a select box,
a hidden input field, or a cookie. The first example shows that such a
simple query can cause disasters.
A defense-in-depth strategy involves several good coding practices:
-
Never connect to the database as a superuser or as the database owner.
Use always customized users with minimal privileges.
-
Check if the given input has the expected data type. PHP has
a wide range of input validating functions, from the simplest ones
found in Variable Functions and
in Character Type Functions
(e.g. is_numeric(), ctype_digit()
respectively) and onwards to the
Perl Compatible Regular Expressions
support.
-
If the application expects numerical input, consider verifying data
with ctype_digit(), silently change its type
using settype(), or use its numeric representation
by sprintf().
-
If the database layer doesn't support binding variables then
quote each non-numeric user-supplied value that is passed to the
database with the database-specific string escape function (e.g.
mysql_real_escape_string(),
sqlite_escape_string(), etc.).
Generic functions like addslashes() are useful only
in a very specific environment (e.g. MySQL in a single-byte character
set with disabled NO_BACKSLASH_ESCAPES), so it is
better to avoid them.
-
Do not print out any database-specific information, especially
about the schema, by fair means or foul. See also Error Reporting and Error Handling and Logging Functions.
Besides these, you benefit from logging queries either within your script
or by the database itself, if it supports logging. Obviously, the logging is unable
to prevent any harmful attempt, but it can be helpful to trace back which
application has been circumvented. The log is not useful by itself but
through the information it contains. More detail is generally better than less.